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Setting & Notation

Focus

We consider

Let A € CV*N regular, b € CV. We aim to find x € CV such that

A-x+r=Db

and its residual r is small.

We do not look at

1. Preconditioners; e.g. left, right, spd, flexible
2. linear subsolvers; e.g. projectors, deflators

3. roundoff errors
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Setting & Notation

Notation

We use

1. #MV = number of matrix-vector-products

2. U as ansatz space with elements u
3. C = A -U as image space with elementsc = A -u
4. P as test space, dim(P) = #RDs (number of reduced dimensions)

We use these operators:

oU,P)=u-(P".c)t - P
VU, P)=1-A-0U,P)

Martin Neuenhofen
Short Recycling of Krylov Subspaces



Introduction
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Introduction to Recycling

Basic: One System

A-x=b

Desire: full GMRES < Krylov subspace = hold all information

Compute U = K,(A; b) and find Residual-optimal x = ®(U/,C) - b.
= eliminate one residual direction per MV (#RDs = #MVs)

Model problem Numerical treatment
Finite differences:

Solve Poisson problem:

{ ~Au=f inQ } 3 “I’A_z”ﬁ:fp
X

u=0 on9Q BEB(p)
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Introduction to Recycling

Advanced: Sequence of rhs with fixed matrix

A - x(®) :b(L), L= 1,---,nEqns

Desire: full GCR < generalization of Krylov subspace = hold all

information
Compute U :=U + K, (A; v(U,C) - b(b)) and then find Residual-optimal

x = ®U,C)-bY in it.
= eliminate one residual direction per MV (#RDs = #MVs)

Model problem
Solve Fourier problem: Numerical treatment

Ou—Au="Ff inQ 1. spatial finite differences

u(x,0)=0 inQ 2. temporal implicit Euler
u(x,t)=0 on 0Q
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Introduction to Recycling

Voodoo: Sequence with 'slowly’ changing matrix

AL xO =) =1, nEgns

Desire: no idea

Best hope: eliminate one residual direction per MV (#RDs = #MVs)

Model problem Numerical treatment

Solve generalized Poisson problem: Finite differences:
~V-(a(u)-Vu)=f inQ ) “P‘z"ﬁ.apgaﬁ:fp
u=0 on 0Q BEB(p) e
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Find better Solver

GCR (k, m)

Algorithm 1: RGCRO
Data: A,r,x,tol, U,C
Result: x,U,C
x:=x+ U, C)-r,r:=VUC)-r
while ||r|| > tol do
u:=r, c:=A-u
c=c—C-~v1C, ui=u—-U-~
C:=[C,c], U:=[U,u]
r=r—w-cLC, x=x+w-u
if size(U,2)> m then
| Reduce U, C to CNVxk
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Recycling can be usefull...
A = gallery(’poisson’,100)
b =1
b®) = 0.5 - (sign(y +0.5) — 0.5- 1)

b | p®@
residual convergence
2
right hand sides RGCROfu”(0,0,bl) - U1'C1
0 ——RGCRO, (0,0,b,)
Ll —— RGCROfu”(Ul,Cl,bZ)
s
~ -4
B Ll
j=2}
o
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y-axis o x-axis _12
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f(x.y)

...but the problem must allow it!
A = gallery(’poisson’,100)
b =1
b = 0.5 - sign(y)
K(A;bD) L K(A; b®) — negative test case

residual convergence

right hand sides ——RGCRO, (0,0,b,) - U,,C
full 1 1’71

— RGCROfu”(0,0,bz)

—%—RGCRO, (Urcl'bz)

full

log, (Irl/ b

-12 i i i i i i i
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A practical example:

Solve with impl. Euler,
Ax =1/101, At =0.1: B = gallery(’poisson’,100)

— . 2.
Do Ao G A=1+01-(101)2-B
u(x,00=0 inQ b =1
u(x,t)ZO auf 0Q2 b(2):A71b(1)_€b(1)Lb(l) //update

residual convergence

right hand sides —_— RGCROfu”(0,0,bl) - Ul’cl
o 0
——RGCRO, ,(0,0,b,)
P —»—RGCRO,,(U,.C, b))
2
=
Cg .
=)
o
-8
_100
1ok ; ; ; ; ; ;
0 50 100 150 200 250 300

#MatVecs
With Recycling: Five MVs for second solve!
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Find better Solver

Summary on Recycling

Idea of reusing all information is natural.
1. start with i = 0)
2. Update UuU:=U+ {rcurrent}

— can be interpreted as generalization of K for sequence of multiple rhs

1. no loss of already computed
information
— optimality in #MVs

1. additional orthogonalizations

2. additional storage

Not using a Recycling method for a sequence is comparable to not using
a Krylov method for a single system.
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Basic SR-Solvers

a full recycling method, but with ...

1. short recurrences, small storage
2. nearly optimal residual
3. #MVs; ~ #RDs; ~ #RDs; > #MV,

4. no transpose

I will present

short-term recurrence methods recycling k - J-dimensional U by
1. storage of only k columns of size N

2. additional computational cost of

2.1. 2-J MVs with A
2.2. 2-J MVs with a dense N x k-Matrix

Martin Neuenhofen
Short Recycling of Krylov Subspaces



Basic SR-Solvers

Structure

In the following | present these methods

1. SRIDR: first prototype

2. SRMR: fundamental theory

3. (SRBIiCG: non-hermitian generalization)
4. Outlook: SRse-ML(k)BiCG-IDR(s)

For each method | show

1. Theory
2. Building blocks
3. Performance
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Basic SR-Solvers
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SRIDR - Short Recycling for IDR

SRIDR - Theory : The Short Recycling idea

The SRIDR method... Theoretical use:

has only little practial use incorporates extension theory

but elegant theory offers modification strategies
conventional IDR(2) modified IDR(2)

G G
r
gj

Figure 1. Each dimension Figure 2: Skip auxiliary steps if c;
reduction costs 1 MV. are already of higher level.
— #RDs = #MVs - 2/3 — #RDs = #MVs - 2
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Basic SR-Solvers
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SRIDR - Short Recycling for IDR

SRIDR - Method

Algorithm 2: SRIDR
Data: A,r,x,J, U,C,P,w, J*
Result: x,U,C,P,w, J
forj=1,....,J—1do
x:=x+OU,P)-r, r=VUTP)r /regG NS
if j > J* then
| Choose w;
x=x+wj-r, r'=(I1-w-A)-r /keg
if j > J* then
fori:=1,...,sdo
L ui = (U, P) +wj-V(U,P))-r
ci:=A- ug //C,'Egj
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Basic SR-Solvers
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SRIDR - Short Recycling for IDR

SRIDR - Performance

residual convergence

o
o ——IDR(s=8,b,) - Data(d) | NSTIENEN]
. —— IDR(S:B,bz)
X —%— SRIDR(I'=max,s=8.b,) red: (U,C,P,w, J*) obtained
= O'h‘ SRIDR(I'=10,5=8,b) from last IDR-cycle of first
= : system (black curve)
= o
o : (U,C,P,w, J*) obtained
= ol earlier after 10*" IDR-cycle of
Ll first system (black curve)
107 . . . .
b ‘ ‘ ‘ ‘ ‘ ‘ . — still improving, but far from optimal
B 0 50 100 150 200 250 300 350
#MatVecs
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Basic SR-Solvers
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SRMR - Short Recycling for MINRES

SRMR - Theory

After SRIDR | developed simple building blocks: Short Representations.

Krylov Recurrence

Hessenberg form: A-V =V -H
Store only: V = V(:,1: J: m) € CN*k and H € Clm+1)xm,
k-J=m.

Theorem 1 (Short Representation)

There exist permutation Tl € C™*™ depending on k,J, and triangular
K € C™*™ depending on k,J,H, such that

V.-H-K=[V,A-V,. ,A"t.v].M.
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Basic SR-Solvers

[e] lee)

SRMR - Short Recycling for MINRES

SRMR - Method

With this we get:

SRMR Prototype

1. Solve first system A - x(*) = b(!). On the fly
1.1. store each J™ vector v;, beginning with first.
1.2. store tridiagonal T from Lanczos procedure.
2. Recycle for solve of A - x(t+1) = p(+1) by
xH) = v (V- Tt plts),
2.1. For this compute M and K, latter in O(m - J).
2.2. [\7,A V., ATt -\7] and its transpose can be multiplied to
vector in J MVs and m scalar products.

3. Naive: If x(**#) is not good enough, use it as initial guess.
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Basic SR-Solvers
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SRMR - Short Recycling for MINRES

SRMR - Performance

residual convergence

—SRMR(b,) - U, T
——SRMR(b,) Explanation

—»— SRMR(k=17,J=10,b,) k=17 J =10

Stored: U € (CNX/:
Recycled: C*(A; U) = Ki70(A; b))
Add. Cost: 170 orthogonalizations.

log, (I / |bl)

Desire: Recycle Kaos(A; b™M)
Problem: Instability for high k, J

1 ‘ ‘ ‘ ‘ ‘
° * O Matvecs 20 *% — speed-up of 2, but far from optimal

Can we do better?
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Basic SR-Solvers
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SRMR - Short Recycling for MINRES

SRBICG - Theory

As BiCG is neither competitive nor residual minimizing, this method is
only for theory.

1. Adapt SRMR to unsymmetric systems by use of Bi-Lanczos

procedure.
A-V=V.T
A" w=w.T"
W' .v=i

2. For this use short representations for both V and W.
3. Notice: For MV with W/ no MV with A" is needed!
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Practical improvements

Practical improvements

Stabilization

Stability of short representations depends on:
1. Size m: cond(V) or cond(W" - V) grows.
2. Compression J: cond([V,A -V, ...,A”"! . V]) grows.
3. MGS becomes GS: no iterative orthogonalization of r.

All these aspects can be handled.

A-posteriori-orthogonalization

For the a-posteriori iterates, we would like to
1. conserve orthogonality of r to recycled P.
2. use short recurrences, not depending on size of recycling space.

We already know how this can be done. ®
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Practical improvements
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Stabilization

Stabilization - Idea

Idea: Split the recurrence

Under slight modification of A, one can split
A-U=UT,A U=V, A V=V.T, A". w=w.T1/
toU = [Ul, U2, ], V= [Vl,V2, ], W = [Wl,Wz, ] with kind of
AU=V,A V,=V,-T;, A". w,=w,;. T,
where T; are diagonal blocks of T and columns 55,';)“ = 5(1i+1).

Now for each U; and W;, you need compressed fJ,-, W,-.
— memory tradeoff
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Practical improvements
[

A-posteriori-orthogonalization

A-posteriori-orthogonalization - |dea

Given from recycling procedure

x,r € CN and U,V € CN*k such that
r, Vi, ...,Vg 1 ’Ck.J(AH; [plv ceey pk])

a-posteriori recurrence

After slight modification, r,v; € G,. If J > k, then one does not need
further MVs for this modification.
— use IDR-type method, s > k

Remark: For efficient extension s should be > 1.
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Practical improvements

Numerical example: stabilized & a.p.-orthogonalized

1. We use BiCG to generate a

Convergence SRse-BiCR(k,J,L,m) i ] :
T T 210-dimensional recycling space

—BiCG(bl) - bata
—GCRy, (b)) 2. For stabilization we devide into
—¥—SRse-BICG(b)) ¢ = 3 blocks of each J =7 and
=10.

3. For a-posteriori-iterations we
only used IDR(1).

extra cost

& Store: 2 - 30 columns
ST Mavees Compute: 210 orthogonalizations
#RDs: 210420
#MVs: 42440

_4}

tog, Irl/ o)

. and we can do better!
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Towards SRse-ML(k)BiCG-IDR
@00

Overview

So far we have three methods, for each #RDs= k-#MV:s for recycling.

| method || general | &/ = K | 1°': RDAMV | good ||r|| | TF |

SRIDR v X 4 X 4
SRMR X 4 4 4 v
SRBICG v 4 X X X

To get the best from all, we start from SRBIiCG and try to replace its
Bi-Lanczos decomposition.
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Towards SRse-ML(k)BiCG-IDR
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fiddling around transpose products

Maybe with IDR?

Gen. Hessenberg decomposition: A-U = U-H-RLR upper triangular.
Maybe T ~ H-R~!? No!

For V=AU, p;:= (A")&0 . p . v; Lp;for i+ j does not hold!

Maybe with ML(k)BiCGstab?

Hessenberg decomposition: A-V =V - T.
Canonical choose W with range(W(:,1: i)) = Ki(A"; [py, ..., p]).

This only leads to biorthogonality, thus W -V = A #£ 1.
A x(H0) = b o WHL AL U -y = ALyl = WH ()
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Towards SRse-ML(k)BiCG-IDR
ooce

ldea WG (oncos result

We have biorthonormal V and W
with
Vi =V

(0)

w; = (A= . p

> Vi,

<

From ouLcoEstruction
A-V=V.Tit follows from
Bi-Lanczos-correlation

A" . w=w.T1".

— obtain short reps for V and W
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Conclusion
.

Conclusion

1. motivation: reuse already computed orthogonality information
2. building block: compress basis matrices

3. sophistications:

3.1. stability, a-posteriori-orthogonality
3.2. (increasing efficiency of first solve: #RDs~#MVs)
3.3. (changing matrices)
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Thanks for your attention!
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Notation

1. n = iteration count = #MVs (number of matrix-vector-products)

2. typically: m =restart parameter, k =number of stored
N-dimensional columns

Kn(A;b) = span {A""!.b}

n

,Cn(A; [p17 p27 RAE) pk]) = _E]?an {Agk(i) ' prk(i)}

J-1
K5(A;0) = {xeC¥|x=> A -0}

j=0

gli) = (i~ 1)/k],  r(i) =mod(i — 1,k) +1
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SRBICG - Assessment

SRBICG is uncompetitive

1. For first solve: #RDs = 2 - #MVs, too bad ratio
2. need to compute shadow basis, leads to

2.1. need for A" products
2.2. lack of residual minimizing property

Outlook: SRse-ML(k)BiCG

| found a method with these properties
1. For first solve: #RDs = k/(k + 1) - #MVs
2. no need to compute shadow basis, leads to

2.1. no need for A" products
2.2. optional use of residual minimizing property
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|dea for Solution of Voodoo type

Recycling is linear operator

The recycling procedure can be interpreted as matrix:

LOUY =u - (AW - y)t

To approximate £L+#)(U), we use L£)(U) as preconditioner for
AT Ly (etp) — pletnr).

LOW) - A xwtm) = £0) g4y . pltn)

This is solved iteratively.
— converges to

xtw) — 1. ((A(b) -u)t. (A(t+u) .u))T ) (A(L) Ut plets)
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Geometric interpretation (hermitian case)

XA(L"'I"’) . x(L+l‘)

\\\ b
% AW .y

AW® . ( LOWU) - b)

\
\
\

iterative scheme

The orthogonal residual becomes biorthogonal

f Krylov Subspaces




sin(m-x) -sin(m-y)? = f

How meaningful?
We cannot check. R of GCR’s QR-decomposition is too ill.

ux.y)

Figure 3: for a(u) =1 Figure 4: for a(u)=1+4+10-u



Finite differences:

2
. Ax
pEB(P)
0) _
. x% =0
Damped Picard
iteration, a = 0.5 {A(x(‘)) &) = p g R10000
Properties of Picard iterates
4 500
=7 relative error
2 —%— relative change| | 450
“é.’, 400
£ op 350
g -2 § 300
@ 2 250
g - =
5 3 200
% -6 150
2 100
-8
50
-10 0 -
0 5

(D) — (1 - a)x®) + a;um}’

system index

Conjugate Gradients vs

up—uﬁ.ap—kaﬁ_f
=1p

2

Number of MatVecs

10 15 20 25 30 35 40
system index

. SRMR(k = 40,w = 3)
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