
Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

Short Recycling of Krylov Subspaces
Talk for NA group, TU Delft

Martin Neuenhofen

24th November 2015

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

Table of Contents

1 Introduction
Setting & Notation
Introduction to Recycling
Find better Solver

2 Basic SR-Solvers
SRIDR - Short Recycling for IDR
SRMR - Short Recycling for MINRES

3 Practical improvements
Stabilization
A-posteriori-orthogonalization

4 Towards SRse-ML(k)BiCG-IDR

5 Conclusion

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

Setting & Notation

Focus

We consider

Let A ∈ CN×N regular, b ∈ CN . We aim to find x ∈ CN such that

A · x + r = b

and its residual r is small.

We do not look at

1. Preconditioners; e.g. left, right, spd, flexible

2. linear subsolvers; e.g. projectors, deflators

3. roundoff errors

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

Setting & Notation

Notation

We use

1. #MV = number of matrix-vector-products

2. U as ansatz space with elements u

3. C = A · U as image space with elements c = A · u
4. P as test space, dim(P) = #RDs (number of reduced dimensions)

We use these operators:

Φ(U ,P) = U · (PH · C)† · PH

Ψ(U ,P) = I− A · Φ(U ,P)

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

Introduction to Recycling

Basic: One System

A · x = b

Desire: full GMRES ← Krylov subspace = hold all information

Compute U = Kn(A; b) and find Residual-optimal x = Φ(U , C) · b.
⇒ eliminate one residual direction per MV (#RDs = #MVs)

Model problem

Solve Poisson problem:{
−∆u = f in Ω

u = 0 on ∂Ω

}
Numerical treatment

Finite differences:∑
p̃∈B(p)

up − up̃

∆x2
= fp

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

Introduction to Recycling

Advanced: Sequence of rhs with fixed matrix

A · x(ι) = b(ι), ι = 1, ..., nEqns

Desire: full GCR ← generalization of Krylov subspace = hold all
information

Compute U := U +Kn

(
A; Ψ(U , C) · b(ι)

)
and then find Residual-optimal

x = Φ(U , C) · b(ι) in it.
⇒ eliminate one residual direction per MV (#RDs = #MVs)

Model problem

Solve Fourier problem: ∂tu −∆u = f in Ω
u(x , 0) = 0 in Ω
u(x , t) = 0 on ∂Ω


Numerical treatment

1. spatial finite differences

2. temporal implicit Euler

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

Introduction to Recycling

Voodoo: Sequence with ’slowly’ changing matrix

A(ι) · x(ι) = b(ι), ι = 1, ..., nEqns

Desire: no idea

Best hope: eliminate one residual direction per MV (#RDs = #MVs)

Model problem

Solve generalized Poisson problem:{−∇ ·
(
a(u) · ∇u

)
= f in Ω

u = 0 on ∂Ω

}
Numerical treatment

Finite differences:∑
p̃∈B(p)

up − up̃

∆x2
· ap + ap̃

2
= fp

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

Find better Solver

GCR (k ,m)

Algorithm 1: RGCRO

Data: A, r, x, tol, U,C
Result: x,U,C
x := x + Φ(U , C) · r, r := Ψ(U , C) · r
while ‖r‖ > tol do

u := r, c := A · u
c := c− C · γ ⊥ C, u := u−U · γ
C := [C, c], U := [U,u]
r := r− ω · c ⊥ C, x := x + ω · u
if size(U,2)> m then

Reduce U,C to CN×k

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Recycling can be usefull...

A = gallery(’poisson’,100)

b(1) = 1

b(2) = 0.5 · (sign(y + 0.5)− 0.5 · 1)

b(1) ⊥ b(2)

0 50 100 150 200 250 300 350
−12

−10

−8

−6

−4

−2

0

2
residual convergence

#MatVecs

lo
g 10

(|
r|

 /
|b

|)

RGCRO
full

(0,0,b
1
) → U

1
,C

1

RGCRO
full

(0,0,b
2
)

RGCRO
full

(U
1
,C

1
,b

2
)

...but the problem must allow it!

A = gallery(’poisson’,100)

b(1) = 1

b(2) = 0.5 · sign(y)

K(A; b(1)) ⊥ K(A; b(2)) → negative test case

0 50 100 150 200 250 300 350
−12

−10

−8

−6

−4

−2

0

2
residual convergence

#MatVecs

lo
g 10

(|
r|

 /
|b

|)

RGCRO
full

(0,0,b
1
) → U

1
,C

1

RGCRO
full

(0,0,b
2
)

RGCRO
full

(U
1
,C

1
,b

2
)

A practical example:

Solve with impl. Euler,
∆x = 1/101, ∆t = 0.1: ∂tu −∆u = f in Ω

u(x , 0) = 0 in Ω
u(x , t) = 0 auf ∂Ω


B = gallery(’poisson’,100)

A = I + 0.1 · (101)2 · B

b(1) = 1

b(2) = A−1 · b(1) − ξ · b(1) ⊥ b(1) // update

0 50 100 150 200 250 300
−12

−10

−8

−6

−4

−2

0

2
residual convergence

#MatVecs

lo
g 10

(|
r|

 /
|b

|)

RGCRO
full

(0,0,b
1
) → U

1
,C

1

RGCRO
full

(0,0,b
2
)

RGCRO
full

(U
1
,C

1
,b

2
)

With Recycling: Five MVs for second solve!

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

Find better Solver

Summary on Recycling

Idea of reusing all information is natural.

1. start with U = ∅
2. update U := U + {rcurrent}
→ can be interpreted as generalization of K for sequence of multiple rhs

Advantage

1. no loss of already computed
information
→ optimality in #MVs

Drawback

1. additional orthogonalizations

2. additional storage

Not using a Recycling method for a sequence is comparable to not using
a Krylov method for a single system.

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

Scope

We want

a full recycling method, but with ...

1. short recurrences, small storage

2. nearly optimal residual

3. #MVs1 ≈ #RDs1 ≈ #RDs2 � #MV2

4. no transpose

I will present

short-term recurrence methods recycling k · J-dimensional U by

1. storage of only k columns of size N

2. additional computational cost of

2.1. 2 · J MVs with A
2.2. 2 · J MVs with a dense N × k-Matrix

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

Structure

In the following I present these methods

1. SRIDR: first prototype

2. SRMR: fundamental theory

3. (SRBiCG: non-hermitian generalization)

4. Outlook: SRse-ML(k)BiCG-IDR(s)

For each method I show

1. Theory

2. Building blocks

3. Performance

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

SRIDR - Short Recycling for IDR

SRIDR - Theory : The Short Recycling idea
The SRIDR method...

has only little practial use

but elegant theory

Theoretical use:

incorporates extension theory

offers modification strategies

conventional IDR(2)

r
c1 c2

Figure 1: Each dimension
reduction costs 1 MV.
→ #RDs = #MVs · 2/3

modified IDR(2)

r

c1 c2

Figure 2: Skip auxiliary steps if ci

are already of higher level.
→ #RDs = #MVs · 2

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

SRIDR - Short Recycling for IDR

SRIDR - Method

Algorithm 2: SRIDR

Data: A, r, x, J, U,C,P,ω, J?

Result: x,U,C,P,ω, J
for j = 1, ..., J − 1 do

x := x + Φ(U ,P) · r, r := Ψ(U ,P) · r //r ∈ Gj−1 ∩ S
if j > J? then

Choose ωj

x := x + ωj · r, r := (I− ωj · A) · r //r ∈ Gj
if j > J? then

for i := 1, ..., s do
ui :=

(
Φ(U ,P) + ωj ·Ψ(U ,P)

)
· r

ci := A · uk //ci ∈ Gj

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

SRIDR - Short Recycling for IDR

SRIDR - Performance

0 50 100 150 200 250 300 350
−12

−10

−8

−6

−4

−2

0

2

4

6

8
residual convergence

#MatVecs

lo
g 10

(|
r|

 /
|b

|)

IDR(s=8,b
1
) → Data(J)

IDR(s=8,b
2
)

SRIDR(J*=max,s=8,b
2
)

SRIDR(J*=10,s=8,b
2
)

Explanation

red: (U,C,P,ω, J?) obtained
from last IDR-cycle of first
system (black curve)

green: (U,C,P,ω, J?) obtained
earlier after 10th IDR-cycle of
first system (black curve)

→ still improving, but far from optimal

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

SRMR - Short Recycling for MINRES

SRMR - Theory

After SRIDR I developed simple building blocks: Short Representations.

Krylov Recurrence

Hessenberg form: A · V = V ·H
Store only: Ṽ = V(:, 1 : J : m) ∈ CN×k and H ∈ C(m+1)×m,
k · J = m.

Theorem 1 (Short Representation)

There exist permutation Π ∈ Cm×m depending on k , J, and triangular
K ∈ Cm×m depending on k , J,H, such that

V ·H ·K = [Ṽ,A · Ṽ, ...,AJ−1 · Ṽ] ·Π .

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

SRMR - Short Recycling for MINRES

SRMR - Method

With this we get:

SRMR Prototype

1. Solve first system A · x(ι) = b(ι). On the fly

1.1. store each J th vector vi , beginning with first.
1.2. store tridiagonal T from Lanczos procedure.

2. Recycle for solve of A · x(ι+µ) = b(ι+µ) by
x(ι+µ) = V · (V · T)† · b(ι+µ).

2.1. For this compute Π and K, latter in O(m · J).
2.2. [Ṽ,A · Ṽ, ...,AJ−1 · Ṽ] and its transpose can be multiplied to

vector in J MVs and m scalar products.

3. Naive: If x(ι+µ) is not good enough, use it as initial guess.

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

SRMR - Short Recycling for MINRES

SRMR - Performance

0 50 100 150 200 250
−12

−10

−8

−6

−4

−2

0

2
residual convergence

#MatVecs

lo
g 10

(|
r|

 /
|b

|)

SRMR(b
1
) → U

17
,T

SRMR(b
2
)

SRMR(k=17,J=10,b
2
)

Can we do better?

Explanation

k = 17, J = 10

Stored: Ũ ∈ CN×k

Recycled: K?J (A; Ũ) = K170(A; b(1))
Add. Cost: 170 orthogonalizations.

Desire: Recycle K206(A; b(1))
Problem: Instability for high k, J

→ speed-up of 2, but far from optimal

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

SRMR - Short Recycling for MINRES

SRBiCG - Theory

As BiCG is neither competitive nor residual minimizing, this method is
only for theory.

Idea

1. Adapt SRMR to unsymmetric systems by use of Bi-Lanczos
procedure.

A · V = V · T
AH ·W = W · TH

W
H · V = I

2. For this use short representations for both V and W.

3. Notice: For MV with WH no MV with AH is needed!

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

Practical improvements

Stabilization

Stability of short representations depends on:

1. Size m: cond(V) or cond(WH · V) grows.

2. Compression J: cond([Ṽ,A · Ṽ, ...,AJ−1 · Ṽ]) grows.

3. MGS becomes GS: no iterative orthogonalization of r.

All these aspects can be handled.

A-posteriori-orthogonalization

For the a-posteriori iterates, we would like to

1. conserve orthogonality of r to recycled P.

2. use short recurrences, not depending on size of recycling space.

We already know how this can be done. ,

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

Stabilization

Stabilization - Idea

Idea: Split the recurrence

Under slight modification of A, one can split

A ·U = U · T, A ·U = V, A · V = V · T, AH ·W = W · TH

to U = [U1,U2, ...], V = [V1,V2, ...], W = [W1,W2, ...] with kind of

A ·Ui = Vi , A · Vi = Vi · Ti , AH ·Wi = Wi · TH
i ,

where Ti are diagonal blocks of T and columns ξ
(i)
m+1 = ξ

(i+1)
1 .

Now for each Ui and Wi , you need compressed Ũi , W̃i .
→ memory tradeoff

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

A-posteriori-orthogonalization

A-posteriori-orthogonalization - Idea

Given from recycling procedure

x, r ∈ CN and U,V ∈ CN×k , such that
r, v1, ..., vk ⊥ Kk·J(AH ; [p1, ...,pk]).

a-posteriori recurrence

After slight modification, r, vi ∈ GJ . If J > k , then one does not need
further MVs for this modification.
→ use IDR-type method, s ≥ k

Remark: For efficient extension s should be > 1.

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

Numerical example: stabilized & a.p.-orthogonalized

0 50 100 150 200 250 300 350 400 450
−12

−10

−8

−6

−4

−2

0

2
Convergence SRse−BiCR(k,J,L,m)

#MatVecs

lo
g 10

(|
r|

 /
|b

|)

BiCG(b
1
) → Data

GCR
full

(b
1
)

SRse−BiCG(b
2
)

... and we can do better!

1. We use BiCG to generate a
210-dimensional recycling space

2. For stabilization we devide into
` = 3 blocks of each J = 7 and
k = 10.

3. For a-posteriori-iterations we
only used IDR(1).

extra cost

Store: 2 · 30 columns
Compute: 210 orthogonalizations
#RDs: 210+20
#MVs: 42+40

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

Overview

We have

So far we have three methods, for each #RDs= k ·#MVs for recycling.
method general U = K 1st : RD≈MV good ‖r‖ TF

SRIDR 3 7 3 7 3

SRMR 7 3 3 3 3

SRBiCG 3 3 7 7 7

To get the best from all, we start from SRBiCG and try to replace its
Bi-Lanczos decomposition.

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

fiddling around transpose products

Maybe with IDR?

Gen. Hessenberg decomposition: A ·U = U ·H ·R−1, R upper triangular.
Maybe T ≈ H · R−1? No!

For V = A ·U, pi := (AH)gs (i) · prs (i), vi ⊥ pj for i 6= j does not hold!

Maybe with ML(k)BiCGstab?

Hessenberg decomposition: A · V = V · T.
Canonical choose W with range(W(:, 1 : i)) = Ki (AH ; [p1, ...,ps]).

This only leads to biorthogonality, thus WH · V = Λ 6= I.

A · x(ι+µ) = b(ι+µ) ⇒ WH · A ·U · y(ι+µ) = Λ · y(ι+µ) = WH · b(ι+µ)

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

Build method by hand

Idea Bi-Lanczos result

We have biorthonormal V and W
with

vi = v
(0)
i

wi = (AH)gs (i) · prs (i) −
∑
ι<i

γi,ι · pι .

From our construction
A · V = V · T it follows from
Bi-Lanczos-correlation

AH ·W = W · TH .

→ obtain short reps for V and W
Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

Conclusion

1. motivation: reuse already computed orthogonality information

2. building block: compress basis matrices

3. sophistications:

3.1. stability, a-posteriori-orthogonality
3.2. (increasing efficiency of first solve: #RDs≈#MVs)
3.3. (changing matrices)

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

[GCR-full] P. Benner and L. Feng, Recycling Krylov Subspaces for
Solving Linear Systems with successively changing Right-Hand-Sides
arising in Model Reduction, Lecture Notes in Electrical Engineering,
Vol. 74, pp. 125-140, Springer 2011.

[RGMRES] R. B. Morgan, GMRES with Deflated Restarting, SIAM J.
Sci. Comput., 24(1), pp. 20-37, 2002.

[GCROT] E. de Sturler, Truncation Strategies for optimal Krylov
subspace methods, SIAM J. Numer. Anal., Vol. 36(3), pp. 864-889,
1999.

[GCRO-DR] M. Parks and E. de Sturler and G. Mackey and D.D.
Johnson and S. Maiti, Recycling Krylov subspaces for sequences of
linear systems, SIAM J. Sci. Comput. Vol. 28(5), pp. 1651-1674,
2006.

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

[R-MINRES] S. Wang and E. de Sturler and G. H. Paulino, Large-scale
topology optimization using preconditioned Krylov subspace methods
with recycling, Int. J. for Num. Meth. in Engineering, Vol. 69(12),
pp. 2441-2468, 2006.

[R-BiCG] K. Ahuja and E. de Sturler and P. Benner, Recycling
BiCGSTAB with an Application to Parametric Model Order
Reduction, MPI Magdeburg preprints, pp. 13-21, 2013.

[brought me to SRIDR] M. Miltenberger, Die IDR(s)-Methode zur
Lösung von parametrisierten Gleichungssystemen, Diplombarbeit, TU
Berlin, 2009.

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

Thanks for your attention!

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

Notation

We write

1. n = iteration count = #MVs (number of matrix-vector-products)

2. typically: m =restart parameter, k =number of stored
N-dimensional columns

Kn(A; b) = span
i=1,...,n

{Ai−1 · b}

Kn(A; [p1,p2, ...,pk]) = span
i=1,...,n

{Agk (i) · prk (i)}

K?J (A; Ũ) =
{

x ∈ CN | x =
J−1∑
j=0

Aj · Ũ · γ j

}
gk(i) = b(i − 1)/kc, rk(i) = mod(i − 1, k) + 1

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

SRBiCG - Assessment

SRBiCG is uncompetitive

1. For first solve: #RDs = 2 · #MVs, too bad ratio

2. need to compute shadow basis, leads to

2.1. need for AH products
2.2. lack of residual minimizing property

Outlook: SRse-ML(k)BiCG

I found a method with these properties

1. For first solve: #RDs = k/(k + 1) · #MVs

2. no need to compute shadow basis, leads to

2.1. no need for AH products
2.2. optional use of residual minimizing property

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

Idea for Solution of Voodoo type

Recycling is linear operator

The recycling procedure can be interpreted as matrix:

L(ι)(U) := U · (A(ι) · U)†

To approximate L(ι+µ)(U), we use L(ι)(U) as preconditioner for

A(ι+µ) · x(ι+µ) = b(ι+µ):

L(ι)(U) · A(ι+µ) · x(ι+µ) = L(ι)(U) · b(ι+µ) .

This is solved iteratively.
→ converges to

x(ι+µ) = U ·
(

(A(ι) ·U)† · (A(ι+µ) · U)
)†
· (A(ι) · U)† · b(ι+µ).

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction Basic SR-Solvers Practical improvements Towards SRse-ML(k)BiCG-IDR Conclusion

Geometric interpretation (hermitian case)

iterative scheme

The orthogonal residual becomes biorthogonal.

Martin Neuenhofen

Short Recycling of Krylov Subspaces

 −∇ ·
(
a(u) · ∇u

)
= f in Ω = (0, 1)2

u = 0 on ∂Ω
sin(π · x) · sin(π · y)2 = f


How meaningful?

We cannot check. R of GCR’s QR-decomposition is too ill.

Figure 3: for a(u) = 1 Figure 4: for a(u) = 1 + 10 · u

Finite differences:
∑

p̃∈B(p)

up − up̃

∆x2
· ap + ap̃

2
= fp

Damped Picard
iteration, α = 0.5

x(0) = 0{
A(x(ι)) · x̃(ι+1) = b ∈ R10000

x(ι+1) = (1− α) x(ι) + α x̃(ι+1)

}
, ι = 0, ..., 40

0 5 10 15 20 25 30 35 40
−10

−8

−6

−4

−2

0

2

4
Properties of Picard iterates

system index

lo
g 10

 o
f r

el
at

iv
e

er
ro

r
/ c

ha
ng

e

relative error
relative change

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

350

400

450

500
Number of MatVecs

system index

M

at
V

ec
s

Conjugate Gradients vs. SRMR(k = 40,w = 3)

	Introduction
	Setting & Notation
	Introduction to Recycling
	Find better Solver

	Basic SR-Solvers
	SRIDR - Short Recycling for IDR
	SRMR - Short Recycling for MINRES

	Practical improvements
	Stabilization
	A-posteriori-orthogonalization
	

	Towards SRse-ML(k)BiCG-IDR
	

	Conclusion
	

	
	

