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Setting & Notation

Focus

We consider

Let A ∈ CN×N regular, b ∈ CN . We aim to find x ∈ CN such that

A · x + r = b

and its residual r is small.

We do not look at

1. Preconditioners; e.g. left, right, spd, flexible

2. linear subsolvers; e.g. projectors, deflators

3. roundoff errors
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Setting & Notation

Notation

We use

1. #MV = number of matrix-vector-products

2. U as ansatz space with elements u

3. C = A · U as image space with elements c = A · u
4. P as test space, dim(P) = #RDs (number of reduced dimensions)

We use these operators:

Φ(U ,P) = U · (PH · C)† · PH

Ψ(U ,P) = I− A · Φ(U ,P)
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Introduction to Recycling

Basic: One System

A · x = b

Desire: full GMRES ← Krylov subspace = hold all information

Compute U = Kn(A; b) and find Residual-optimal x = Φ(U , C) · b.
⇒ eliminate one residual direction per MV (#RDs = #MVs)

Model problem

Solve Poisson problem:{
−∆u = f in Ω

u = 0 on ∂Ω

}
Numerical treatment

Finite differences:∑
p̃∈B(p)

up − up̃

∆x2
= fp
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Introduction to Recycling

Advanced: Sequence of rhs with fixed matrix

A · x(ι) = b(ι), ι = 1, ..., nEqns

Desire: full GCR ← generalization of Krylov subspace = hold all
information

Compute U := U +Kn

(
A; Ψ(U , C) · b(ι)

)
and then find Residual-optimal

x = Φ(U , C) · b(ι) in it.
⇒ eliminate one residual direction per MV (#RDs = #MVs)

Model problem

Solve Fourier problem: ∂tu −∆u = f in Ω
u(x , 0) = 0 in Ω
u(x , t) = 0 on ∂Ω


Numerical treatment

1. spatial finite differences

2. temporal implicit Euler
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Introduction to Recycling

Voodoo: Sequence with ’slowly’ changing matrix

A(ι) · x(ι) = b(ι), ι = 1, ..., nEqns

Desire: no idea

Best hope: eliminate one residual direction per MV (#RDs = #MVs)

Model problem

Solve generalized Poisson problem:{−∇ ·
(
a(u) · ∇u

)
= f in Ω

u = 0 on ∂Ω

}
Numerical treatment

Finite differences:∑
p̃∈B(p)

up − up̃

∆x2
· ap + ap̃

2
= fp
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Find better Solver

GCR (k ,m)

Algorithm 1: RGCRO

Data: A, r, x, tol, U,C
Result: x,U,C
x := x + Φ(U , C) · r, r := Ψ(U , C) · r
while ‖r‖ > tol do

u := r, c := A · u
c := c− C · γ ⊥ C, u := u−U · γ
C := [C, c], U := [U,u]
r := r− ω · c ⊥ C, x := x + ω · u
if size(U,2)> m then

Reduce U,C to CN×k
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Recycling can be usefull...

A = gallery(’poisson’,100)

b(1) = 1

b(2) = 0.5 · (sign(y + 0.5)− 0.5 · 1)

b(1) ⊥ b(2)
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...but the problem must allow it!

A = gallery(’poisson’,100)

b(1) = 1

b(2) = 0.5 · sign(y)

K(A; b(1)) ⊥ K(A; b(2)) → negative test case
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A practical example:

Solve with impl. Euler,
∆x = 1/101, ∆t = 0.1: ∂tu −∆u = f in Ω

u(x , 0) = 0 in Ω
u(x , t) = 0 auf ∂Ω


B = gallery(’poisson’,100)

A = I + 0.1 · (101)2 · B

b(1) = 1

b(2) = A−1 · b(1) − ξ · b(1) ⊥ b(1) // update

0 50 100 150 200 250 300
−12

−10

−8

−6

−4

−2

0

2
residual convergence

#MatVecs

lo
g 10

(|
r|

 / 
|b

|)

 

 

RGCRO
full

(0,0,b
1
) → U

1
,C

1

RGCRO
full

(0,0,b
2
)

RGCRO
full

(U
1
,C

1
,b

2
)

With Recycling: Five MVs for second solve!
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Find better Solver

Summary on Recycling

Idea of reusing all information is natural.

1. start with U = ∅
2. update U := U + {rcurrent}
→ can be interpreted as generalization of K for sequence of multiple rhs

Advantage

1. no loss of already computed
information
→ optimality in #MVs

Drawback

1. additional orthogonalizations

2. additional storage

Not using a Recycling method for a sequence is comparable to not using
a Krylov method for a single system.
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Scope

We want

a full recycling method, but with ...

1. short recurrences, small storage

2. nearly optimal residual

3. #MVs1 ≈ #RDs1 ≈ #RDs2 � #MV2

4. no transpose

I will present

short-term recurrence methods recycling k · J-dimensional U by

1. storage of only k columns of size N

2. additional computational cost of

2.1. 2 · J MVs with A
2.2. 2 · J MVs with a dense N × k-Matrix
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Structure

In the following I present these methods

1. SRIDR: first prototype

2. SRMR: fundamental theory

3. (SRBiCG: non-hermitian generalization)

4. Outlook: SRse-ML(k)BiCG-IDR(s)

For each method I show

1. Theory

2. Building blocks

3. Performance
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SRIDR - Short Recycling for IDR

SRIDR - Theory : The Short Recycling idea
The SRIDR method...

has only little practial use

but elegant theory

Theoretical use:

incorporates extension theory

offers modification strategies

conventional IDR(2)

r
c1 c2

Figure 1: Each dimension
reduction costs 1 MV.
→ #RDs = #MVs · 2/3

modified IDR(2)

r

c1 c2

Figure 2: Skip auxiliary steps if ci

are already of higher level.
→ #RDs = #MVs · 2
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SRIDR - Short Recycling for IDR

SRIDR - Method

Algorithm 2: SRIDR

Data: A, r, x, J, U,C,P,ω, J?

Result: x,U,C,P,ω, J
for j = 1, ..., J − 1 do

x := x + Φ(U ,P) · r, r := Ψ(U ,P) · r //r ∈ Gj−1 ∩ S
if j > J? then

Choose ωj

x := x + ωj · r, r := (I− ωj · A) · r //r ∈ Gj
if j > J? then

for i := 1, ..., s do
ui :=

(
Φ(U ,P) + ωj ·Ψ(U ,P)

)
· r

ci := A · uk //ci ∈ Gj
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SRIDR - Short Recycling for IDR

SRIDR - Performance
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Explanation

red: (U,C,P,ω, J?) obtained
from last IDR-cycle of first
system (black curve)

green: (U,C,P,ω, J?) obtained
earlier after 10th IDR-cycle of
first system (black curve)

→ still improving, but far from optimal
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SRMR - Short Recycling for MINRES

SRMR - Theory

After SRIDR I developed simple building blocks: Short Representations.

Krylov Recurrence

Hessenberg form: A · V = V ·H
Store only: Ṽ = V(:, 1 : J : m) ∈ CN×k and H ∈ C(m+1)×m,
k · J = m.

Theorem 1 (Short Representation)

There exist permutation Π ∈ Cm×m depending on k , J, and triangular
K ∈ Cm×m depending on k , J,H, such that

V ·H ·K = [Ṽ,A · Ṽ, ...,AJ−1 · Ṽ] ·Π .
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SRMR - Short Recycling for MINRES

SRMR - Method

With this we get:

SRMR Prototype

1. Solve first system A · x(ι) = b(ι). On the fly

1.1. store each J th vector vi , beginning with first.
1.2. store tridiagonal T from Lanczos procedure.

2. Recycle for solve of A · x(ι+µ) = b(ι+µ) by
x(ι+µ) = V · (V · T)† · b(ι+µ).

2.1. For this compute Π and K, latter in O(m · J).
2.2. [Ṽ,A · Ṽ, ...,AJ−1 · Ṽ] and its transpose can be multiplied to

vector in J MVs and m scalar products.

3. Naive: If x(ι+µ) is not good enough, use it as initial guess.
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SRMR - Short Recycling for MINRES

SRMR - Performance
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Can we do better?

Explanation

k = 17, J = 10

Stored: Ũ ∈ CN×k

Recycled: K?J (A; Ũ) = K170(A; b(1))
Add. Cost: 170 orthogonalizations.

Desire: Recycle K206(A; b(1))
Problem: Instability for high k, J

→ speed-up of 2, but far from optimal
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SRMR - Short Recycling for MINRES

SRBiCG - Theory

As BiCG is neither competitive nor residual minimizing, this method is
only for theory.

Idea

1. Adapt SRMR to unsymmetric systems by use of Bi-Lanczos
procedure.

A · V = V · T
AH ·W = W · TH

W
H · V = I

2. For this use short representations for both V and W.

3. Notice: For MV with WH no MV with AH is needed!
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Practical improvements

Stabilization

Stability of short representations depends on:

1. Size m: cond(V) or cond(WH · V) grows.

2. Compression J: cond([Ṽ,A · Ṽ, ...,AJ−1 · Ṽ]) grows.

3. MGS becomes GS: no iterative orthogonalization of r.

All these aspects can be handled.

A-posteriori-orthogonalization

For the a-posteriori iterates, we would like to

1. conserve orthogonality of r to recycled P.

2. use short recurrences, not depending on size of recycling space.

We already know how this can be done. ,
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Stabilization

Stabilization - Idea

Idea: Split the recurrence

Under slight modification of A, one can split

A ·U = U · T, A ·U = V, A · V = V · T, AH ·W = W · TH

to U = [U1,U2, ...], V = [V1,V2, ...], W = [W1,W2, ...] with kind of

A ·Ui = Vi , A · Vi = Vi · Ti , AH ·Wi = Wi · TH
i ,

where Ti are diagonal blocks of T and columns ξ
(i)
m+1 = ξ

(i+1)
1 .

Now for each Ui and Wi , you need compressed Ũi , W̃i .
→ memory tradeoff
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A-posteriori-orthogonalization

A-posteriori-orthogonalization - Idea

Given from recycling procedure

x, r ∈ CN and U,V ∈ CN×k , such that
r, v1, ..., vk ⊥ Kk·J(AH ; [p1, ...,pk ]).

a-posteriori recurrence

After slight modification, r, vi ∈ GJ . If J > k , then one does not need
further MVs for this modification.
→ use IDR-type method, s ≥ k

Remark: For efficient extension s should be > 1.
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Numerical example: stabilized & a.p.-orthogonalized
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... and we can do better!

1. We use BiCG to generate a
210-dimensional recycling space

2. For stabilization we devide into
` = 3 blocks of each J = 7 and
k = 10.

3. For a-posteriori-iterations we
only used IDR(1).

extra cost

Store: 2 · 30 columns
Compute: 210 orthogonalizations
#RDs: 210+20
#MVs: 42+40
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Overview

We have

So far we have three methods, for each #RDs= k ·#MVs for recycling.
method general U = K 1st : RD≈MV good ‖r‖ TF

SRIDR 3 7 3 7 3

SRMR 7 3 3 3 3

SRBiCG 3 3 7 7 7

To get the best from all, we start from SRBiCG and try to replace its
Bi-Lanczos decomposition.
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fiddling around transpose products

Maybe with IDR?

Gen. Hessenberg decomposition: A ·U = U ·H ·R−1, R upper triangular.
Maybe T ≈ H · R−1? No!

For V = A ·U, pi := (AH)gs (i) · prs (i), vi ⊥ pj for i 6= j does not hold!

Maybe with ML(k)BiCGstab?

Hessenberg decomposition: A · V = V · T.
Canonical choose W with range(W(:, 1 : i)) = Ki (AH ; [p1, ...,ps ]).

This only leads to biorthogonality, thus WH · V = Λ 6= I.

A · x(ι+µ) = b(ι+µ) ⇒ WH · A ·U · y(ι+µ) = Λ · y(ι+µ) = WH · b(ι+µ)
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Build method by hand

Idea Bi-Lanczos result

We have biorthonormal V and W
with

vi = v
(0)
i

wi = (AH)gs (i) · prs (i) −
∑
ι<i

γi,ι · pι .

From our construction
A · V = V · T it follows from
Bi-Lanczos-correlation

AH ·W = W · TH .

→ obtain short reps for V and W
Martin Neuenhofen
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Conclusion

1. motivation: reuse already computed orthogonality information

2. building block: compress basis matrices

3. sophistications:

3.1. stability, a-posteriori-orthogonality
3.2. (increasing efficiency of first solve: #RDs≈#MVs)
3.3. (changing matrices)
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Thanks for your attention!
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Notation

We write

1. n = iteration count = #MVs (number of matrix-vector-products)

2. typically: m =restart parameter, k =number of stored
N-dimensional columns

Kn(A; b) = span
i=1,...,n

{Ai−1 · b}

Kn(A; [p1,p2, ...,pk ]) = span
i=1,...,n

{Agk (i) · prk (i)}

K?J (A; Ũ) =
{

x ∈ CN | x =
J−1∑
j=0

Aj · Ũ · γ j

}
gk(i) = b(i − 1)/kc, rk(i) = mod(i − 1, k) + 1
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SRBiCG - Assessment

SRBiCG is uncompetitive

1. For first solve: #RDs = 2 · #MVs, too bad ratio

2. need to compute shadow basis, leads to

2.1. need for AH products
2.2. lack of residual minimizing property

Outlook: SRse-ML(k)BiCG

I found a method with these properties

1. For first solve: #RDs = k/(k + 1) · #MVs

2. no need to compute shadow basis, leads to

2.1. no need for AH products
2.2. optional use of residual minimizing property
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Idea for Solution of Voodoo type

Recycling is linear operator

The recycling procedure can be interpreted as matrix:

L(ι)(U) := U · (A(ι) · U)†

To approximate L(ι+µ)(U), we use L(ι)(U) as preconditioner for

A(ι+µ) · x(ι+µ) = b(ι+µ):

L(ι)(U) · A(ι+µ) · x(ι+µ) = L(ι)(U) · b(ι+µ) .

This is solved iteratively.
→ converges to

x(ι+µ) = U ·
(

(A(ι) ·U)† · (A(ι+µ) · U)
)†
· (A(ι) · U)† · b(ι+µ).
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Geometric interpretation (hermitian case)

iterative scheme

The orthogonal residual becomes biorthogonal.
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 −∇ ·
(
a(u) · ∇u

)
= f in Ω = (0, 1)2

u = 0 on ∂Ω
sin(π · x) · sin(π · y)2 = f


How meaningful?

We cannot check. R of GCR’s QR-decomposition is too ill.

Figure 3: for a(u) = 1 Figure 4: for a(u) = 1 + 10 · u
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Damped Picard
iteration, α = 0.5

x(0) = 0{
A(x(ι)) · x̃(ι+1) = b ∈ R10000

x(ι+1) = (1− α) x(ι) + α x̃(ι+1)
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, ι = 0, ..., 40

0 5 10 15 20 25 30 35 40
−10

−8

−6

−4

−2

0

2

4
Properties of Picard iterates

system index

lo
g 10

 o
f r

el
at

iv
e 

er
ro

r 
/ c

ha
ng

e

 

 

relative error
relative change

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

300

350

400

450

500
Number of MatVecs

system index

# 
M

at
V

ec
s

Conjugate Gradients vs. SRMR(k = 40,w = 3)


	Introduction
	Setting & Notation
	Introduction to Recycling
	Find better Solver

	Basic SR-Solvers
	SRIDR - Short Recycling for IDR
	SRMR - Short Recycling for MINRES

	Practical improvements
	Stabilization
	A-posteriori-orthogonalization
	 

	Towards SRse-ML(k)BiCG-IDR
	 

	Conclusion
	 

	 
	 


