		Towards SRse-ML(k)BiCG-IDR	
00 000 00000	000 0000		

Short Recycling of Krylov Subspaces Talk for NA group, TU Delft

Martin Neuenhofen

24th November 2015

(日)

Martin Neuenhofen Short Recycling of Krylov Subspaces

		Towards SRse-ML(k)BiCG-IDR	
00 000 00000	000 0000		

- 4 回 🕨 - 4 回 🕨 - 4 回 🕨

3

Table of Contents

1 Introduction

- Setting & Notation
- Introduction to Recycling
- Find better Solver

2 Basic SR-Solvers

- SRIDR Short Recycling for IDR
- SRMR Short Recycling for MINRES
- 3 Practical improvements
 - Stabilization
 - A-posteriori-orthogonalization
- 4 Towards SRse-ML(k)BiCG-IDR
- 5 Conclusion

Introduction		Towards SRse-ML(k)BiCG-IDR	
• 0 000 00000	000 0000		
Setting & Notation			

Focus

We consider

Let $\mathbf{A} \in \mathbb{C}^{N \times N}$ regular, $\mathbf{b} \in \mathbb{C}^N$. We aim to find $\mathbf{x} \in \mathbb{C}^N$ such that

 $\mathbf{A}\cdot\mathbf{x}+\mathbf{r}=\mathbf{b}$

and its residual r is small.

We do not look at

- 1. Preconditioners; e.g. left, right, spd, flexible
- 2. linear subsolvers; e.g. projectors, deflators
- 3. roundoff errors

Introduction		Towards SRse-ML(k)BiCG-IDR	
00 000 00000	000 0000		
Setting & Notation			

Notation

We use

- 1. #MV = number of matrix-vector-products
- 2. ${\cal U}$ as ansatz space with elements \boldsymbol{u}

3. $C = \mathbf{A} \cdot \mathcal{U}$ as image space with elements $\mathbf{c} = \mathbf{A} \cdot \mathbf{u}$

4. \mathcal{P} as test space, dim $(\mathcal{P}) = \#RDs$ (number of reduced dimensions) We use these operators:

$$\Phi(\mathcal{U}, \mathcal{P}) = \mathcal{U} \cdot (\mathcal{P}^{H} \cdot \mathcal{C})^{\dagger} \cdot \mathcal{P}^{H}$$
$$\Psi(\mathcal{U}, \mathcal{P}) = \mathbf{I} - \mathbf{A} \cdot \Phi(\mathcal{U}, \mathcal{P})$$

Introduction		Towards SRse-ML(k)BiCG-IDR	
00 ● 00 00000	000 0000		

Introduction to Recycling

Basic: One System

$\bm{A}\cdot\bm{x}=\bm{b}$

Desire: full GMRES \leftarrow Krylov subspace = hold all information

Compute $\mathcal{U} = \mathcal{K}_n(\mathbf{A}; \mathbf{b})$ and find Residual-optimal $\mathbf{x} = \Phi(\mathcal{U}, \mathcal{C}) \cdot \mathbf{b}$. \Rightarrow eliminate one residual direction per MV (#RDs = #MVs)

Model problem

Solve Poisson problem:

$$\left\{ \begin{array}{cc} -\Delta u = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{array} \right\}$$

Numerical treatment

Finite differences:

$$\sum_{\tilde{\rho}\in\mathcal{B}(\rho)}\frac{u_{\rho}-u_{\tilde{\rho}}}{\Delta x^2}=f_{\rho}$$

Introduction		Towards SRse-ML(k)BiCG-IDR	
00 000 00000	000 0000		

Introduction to Recycling

Advanced: Sequence of rhs with fixed matrix

$$\mathbf{A} \cdot \mathbf{x}^{(\iota)} = \mathbf{b}^{(\iota)}, \quad \iota = 1, ..., n_{\mathsf{Eqns}}$$

Desire: full GCR \leftarrow generalization of Krylov subspace = hold all information Compute $\mathcal{U} := \mathcal{U} + \mathcal{K}_n(\mathbf{A}; \Psi(\mathcal{U}, \mathcal{C}) \cdot \mathbf{b}^{(\iota)})$ and then find Residual-optimal $\mathbf{x} = \Phi(\mathcal{U}, \mathcal{C}) \cdot \mathbf{b}^{(\iota)}$ in it. \Rightarrow eliminate one residual direction per MV (#RDs = #MVs)

Model problem

Solve Fourier problem:

$$\begin{array}{ll} \partial_t u - \Delta u = f & \text{in } \Omega \\ u(x,0) = 0 & \text{in } \Omega \\ u(x,t) = 0 & \text{on } \partial \Omega \end{array}$$

Numerical treatment

- 1. spatial finite differences
- 2. temporal implicit Euler

Martin Neuenhofen

Short Recycling of Krylov Subspaces

Introduction			Towards SRse-ML(k)BiCG-IDR		
00 000 00000	000 0000				

Voodoo: Sequence with 'slowly' changing matrix

$$\mathbf{A}^{(\iota)} \cdot \mathbf{x}^{(\iota)} = \mathbf{b}^{(\iota)}, \quad \iota = 1, ..., n_{\mathsf{Eqns}}$$

Desire: no idea

Best hope: eliminate one residual direction per MV (#RDs = #MVs)

Model problem

Solve generalized Poisson problem:

$$\begin{cases} -\nabla \cdot (a(u) \cdot \nabla u) = f & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

Numerical treatment

Finite differences:

p

$$\sum_{i \in \mathcal{B}(p)} \frac{u_p - u_{\tilde{p}}}{\Delta x^2} \cdot \frac{a_p + a_{\tilde{p}}}{2} = f_p$$

Introduction		Towards SRse-ML(k)BiCG-IDR	
00 000 ●0000	000 0000		
Find better Solver			

GCR(k,m)

 $\begin{array}{l} \mbox{Algorithm 1: RGCRO} \\ \hline \mbox{Data: } \mathbf{A}, \mathbf{r}, \mathbf{x}, \mathrm{tol}, \ \mathbf{U}, \mathbf{C} \\ \hline \mbox{Result: } \mathbf{x}, \mathbf{U}, \mathbf{C} \\ \mbox{x} := \mathbf{x} + \Phi(\mathcal{U}, \mathcal{C}) \cdot \mathbf{r}, \ \mathbf{r} := \Psi(\mathcal{U}, \mathcal{C}) \cdot \mathbf{r} \\ \mbox{while } \|\mathbf{r}\| > \mathrm{tol \ do} \\ \mbox{u} := \mathbf{r}, \ \mathbf{c} := \mathbf{A} \cdot \mathbf{u} \\ \mbox{c} := \mathbf{c} - \mathbf{C} \cdot \gamma \perp \mathcal{C}, \ \mathbf{u} := \mathbf{u} - \mathbf{U} \cdot \gamma \\ \mbox{C} := [\mathbf{C}, \mathbf{c}], \ \mathbf{U} := [\mathbf{U}, \mathbf{u}] \\ \mbox{r} := \mathbf{r} - \omega \cdot \mathbf{c} \perp \mathcal{C}, \ \mathbf{x} := \mathbf{x} + \omega \cdot \mathbf{u} \\ \mbox{if } size(\mathbf{U}, 2) > m \ \mathbf{then} \\ \mbox{L} \ \mbox{Reduce } \mathbf{U}, \mathbf{C} \ \mathrm{to \ } \mathbb{C}^{N \times k} \end{array}$

▲ロト▲聞と▲臣と▲臣と 臣 のべの

Recycling can be usefull...

$$A = gallery('poisson', 100)$$

$$b^{(1)} = 1$$

$$b^{(2)} = 0.5 \cdot (sign(y + 0.5) - 0.5 \cdot 1)$$

$$b^{(1)} \perp b^{(2)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

...but the problem must allow it!

$$\begin{split} \mathbf{A} &= \texttt{gallery('poisson',100)} \\ \mathbf{b}^{(1)} &= \mathbf{1} \\ \mathbf{b}^{(2)} &= 0.5 \cdot \texttt{sign}(y) \\ \mathcal{K}(\mathbf{A}; \mathbf{b}^{(1)}) \perp \mathcal{K}(\mathbf{A}; \mathbf{b}^{(2)}) \rightarrow \texttt{negative test case} \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

A practical example:

Solve with impl. Euler, $\Delta x = 1/101$, $\Delta t = 0.1$:

$$\left.\begin{array}{ll} \partial_t u - \Delta u = f & \text{in } \Omega\\ u(x,0) = 0 & \text{in } \Omega\\ u(x,t) = 0 & \text{auf } \partial\Omega\end{array}\right\}$$

$$\begin{aligned} \mathbf{B} &= \text{gallery}(\text{'poisson', 100}) \\ \mathbf{A} &= \mathbf{I} + 0.1 \cdot (101)^2 \cdot \mathbf{B} \\ \mathbf{b}^{(1)} &= \mathbf{1} \\ \mathbf{b}^{(2)} &= \mathbf{A}^{-1} \cdot \mathbf{b}^{(1)} - \xi \cdot \mathbf{b}^{(1)} \perp \mathbf{b}^{(1)} / / update \end{aligned}$$

Introduction		Towards SRse-ML(k)BiCG-IDR	
00 000 0000	000 0000		
Find better Solver			

Summary on Recycling

Idea of reusing all information is natural.

- 1. start with $\mathcal{U} = \emptyset$
- 2. update $\mathcal{U} := \mathcal{U} + {\mathbf{r}_{current}}$

 \rightarrow can be interpreted as generalization of ${\cal K}$ for sequence of multiple rhs

Advantage

 no loss of already computed information
 → optimality in #MVs

Drawback

1. additional orthogonalizations

2. additional storage

Not using a Recycling method for a sequence is comparable to not using a Krylov method for a single system.

	Basic SR-Solvers	Towards SRse-ML(k)BiCG-IDR	
00 000 00000	000 0000		

Scope

We want

a full recycling method, \underline{but} with \ldots

- 1. short recurrences, small storage
- 2. nearly optimal residual
- 3. $\#MVs_1 \approx \#RDs_1 \approx \#RDs_2 \gg \#MV_2$
- 4. no transpose

I will present

short-term recurrence methods recycling $k \cdot J$ -dimensional \mathcal{U} by

- 1. storage of only k columns of size N
- 2. additional computational cost of
 - 2.1. $2 \cdot J$ MVs with **A**
 - 2.2. $2 \cdot J$ MVs with a dense $N \times k$ -Matrix

Martin Neuenhofen

	Basic SR-Solvers	Towards SRse-ML(k)BiCG-IDR	
00 000 00000	000 0000		

Structure

In the following I present these methods

- 1. SRIDR: first prototype
- 2. SRMR: fundamental theory
- 3. (SRBiCG: non-hermitian generalization)
- 4. Outlook: SRse-ML(k)BiCG-IDR(s)

For each method I show

- 1. Theory
- 2. Building blocks
- 3. Performance

	Basic SR-Solvers	Towards SRse-ML(k)BiCG-IDR	
00 000 00000	• 00 0000		

SRIDR - Theory : The Short Recycling idea

The SRIDR method...

has only little practial use but elegant theory

conventional IDR(2)

Figure 1: Each dimension reduction costs 1 MV. $\rightarrow \#$ RDs = #MVs $\cdot 2/3$ Theoretical use:

incorporates extension theory

offers modification strategies

 $\rightarrow \# RDs = \# MVs \cdot 2$

	Basic SR-Solvers	Towards SRse-ML(k)BiCG-IDR	
00 000 00000	000 0000		
CDIDD CI . D I	4 100		

SRIDR - Method

Algorithm 2: SRIDR Data: A, r, x, J, U, C, P, ω , J^{*} **Result**: $\mathbf{x}, \mathbf{U}, \mathbf{C}, \mathbf{P}, \boldsymbol{\omega}, J$ for j = 1, ..., J - 1 do $\mathbf{x} := \mathbf{x} + \Phi(\mathcal{U}, \mathcal{P}) \cdot \mathbf{r}, \ \mathbf{r} := \Psi(\mathcal{U}, \mathcal{P}) \cdot \mathbf{r} \ //\mathbf{r} \in \mathcal{G}_{i-1} \cap \mathcal{S}$ if $j > J^*$ then Choose ω_i $\mathbf{x} := \mathbf{x} + \omega_i \cdot \mathbf{r}, \ \mathbf{r} := (\mathbf{I} - \omega_i \cdot \mathbf{A}) \cdot \mathbf{r} \ //\mathbf{r} \in \mathcal{G}_i$ if $i > J^*$ then for i := 1, ..., s do

	Basic SR-Solvers		Towards SRse-ML(k)BiCG-IDR		
	000			0 000	
000	0000				
00000					

SRIDR - Short Recycling for IDR

SRIDR - Performance

Explanation

red: $(\mathbf{U}, \mathbf{C}, \mathbf{P}, \boldsymbol{\omega}, J^*)$ obtained from last IDR-cycle of first system (black curve) green: $(\mathbf{U}, \mathbf{C}, \mathbf{P}, \boldsymbol{\omega}, J^*)$ obtained earlier after 10^{th} IDR-cycle of first system (black curve)

 \rightarrow still improving, but far from optimal

	Basic SR-Solvers		Towards SRse-ML(k)BiCG-IDR	
00 000 00000	000 0000			
SRMR - Short Recycling for MINRES				

SRMR - Theory

After SRIDR I developed simple building blocks: Short Representations.

Krylov Recurrence

Hessenberg form: $\mathbf{A} \cdot \mathbf{V} = \overline{\mathbf{V}} \cdot \overline{\mathbf{H}}$ Store only: $\tilde{\mathbf{V}} = \mathbf{V}(:, 1 : J : m) \in \mathbb{C}^{N \times k}$ and $\overline{\mathbf{H}} \in \mathbb{C}^{(m+1) \times m}$, $k \cdot J = m$.

Theorem 1 (Short Representation)

There exist permutation $\mathbf{\Pi} \in \mathbb{C}^{m \times m}$ depending on k, J, and triangular $\mathbf{K} \in \mathbb{C}^{m \times m}$ depending on k, J, \mathbf{H} , such that

$$\overline{\mathbf{V}}\cdot\overline{\mathbf{H}}\cdot\mathbf{K}=[\widetilde{\mathbf{V}},\mathbf{A}\cdot\widetilde{\mathbf{V}},...,\mathbf{A}^{J-1}\cdot\widetilde{\mathbf{V}}]\cdot\mathbf{\Pi}\,.$$

	Basic SR-Solvers	Towards SRse-ML(k)BiCG-IDR	
00 000 00000	000 0 0 00		
COMP Chart Days	-U f MINDEC		

SRMR - Method

With this we get:

SRMR Prototype

- 1. Solve first system $\mathbf{A} \cdot \mathbf{x}^{(\iota)} = \mathbf{b}^{(\iota)}$. On the fly
 - 1.1. store each J^{th} vector \mathbf{v}_i , beginning with first.
 - 1.2. store tridiagonal **T** from Lanczos procedure.

2. Recycle for solve of
$$\mathbf{A} \cdot \mathbf{x}^{(\iota+\mu)} = \mathbf{b}^{(\iota+\mu)}$$
 by $\mathbf{x}^{(\iota+\mu)} = \mathbf{V} \cdot (\overline{\mathbf{V}} \cdot \overline{\mathbf{T}})^{\dagger} \cdot \mathbf{b}^{(\iota+\mu)}$.

- 2.1. For this compute Π and K, latter in $\mathcal{O}(m \cdot J)$.
- 2.2. $[\tilde{\mathbf{V}}, \mathbf{A} \cdot \tilde{\mathbf{V}}, ..., \mathbf{A}^{J-1} \cdot \tilde{\mathbf{V}}]$ and its transpose can be multiplied to vector in J MVs and m scalar products.
- 3. Naive: If $\mathbf{x}^{(\iota+\mu)}$ is not good enough, use it as initial guess.

	Basic SR-Solvers	Towards SRse-ML(k)BiCG-IDR	
00 000 00000	000 00 0 0		
SPMP Short Page	cling for MINDES		

SRMR - Performance

Can we do better?

Explanation

k = 17, J = 10

Stored: $\tilde{\mathbf{U}} \in \mathbb{C}^{N \times k}$ Recycled: $\mathcal{K}_{J}^{*}(\mathbf{A}; \tilde{\mathbf{U}}) = \mathcal{K}_{170}(\mathbf{A}; \mathbf{b}^{(1)})$ Add. Cost: 170 orthogonalizations.

Desire: Recycle $\mathcal{K}_{206}(\mathbf{A}; \mathbf{b}^{(1)})$ Problem: Instability for high k, J

 \rightarrow speed-up of 2, but far from optimal

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Martin Neuenhofen

Short Recycling of Krylov Subspaces

	Basic SR-Solvers	Towards SRse-ML(k)BiCG-IDR	
00 000 00000	000 000		
SRMR - Short Recy	cling for MINRES		

SRBiCG - Theory

As BiCG is neither competitive nor residual minimizing, this method is only for theory.

Idea

1. Adapt SRMR to unsymmetric systems by use of Bi-Lanczos procedure.

$$\mathbf{A} \cdot \mathbf{V} = \overline{\mathbf{V}} \cdot \overline{\mathbf{T}}$$
$$\mathbf{A}^{H} \cdot \mathbf{W} = \overline{\mathbf{W}} \cdot \underline{\mathbf{T}}^{H}$$
$$\overline{\mathbf{W}}^{H} \cdot \overline{\mathbf{V}} = \underline{\mathbf{I}}$$

・ロト ・聞 ト ・ヨト ・ヨト

Э

- 2. For this use short representations for both ${\boldsymbol{\mathsf{V}}}$ and ${\boldsymbol{\mathsf{W}}}.$
- 3. Notice: For MV with \mathbf{W}^{H} no MV with \mathbf{A}^{H} is needed!

		Practical improvements	Towards SRse-ML(k)BiCG-IDR	
00 000 00000	000 0000			

Practical improvements

Stabilization

Stability of short representations depends on:

- 1. Size *m*: $cond(\mathbf{V})$ or $cond(\mathbf{W}^H \cdot \mathbf{V})$ grows.
- 2. Compression J: $cond([\tilde{\mathbf{V}}, \mathbf{A} \cdot \tilde{\mathbf{V}}, ..., \mathbf{A}^{J-1} \cdot \tilde{\mathbf{V}}])$ grows.
- 3. MGS becomes GS: no iterative orthogonalization of r.

All these aspects can be handled.

A-posteriori-orthogonalization

For the a-posteriori iterates, we would like to

- 1. conserve orthogonality of \boldsymbol{r} to recycled $\mathcal{P}.$
- 2. use short recurrences, not depending on size of recycling space.

イロト イヨト イヨト イヨト

We already know how this can be done. $\hfill \odot$

		Practical improvements	Towards SRse-ML(k)BiCG-IDR	
00 000 00000	000 0000	• • •		
Stabilization				

Stabilization - Idea

Idea: Split the recurrence

Under slight modification of A, one can split

$$\mathbf{A} \cdot \mathbf{U} = \overline{\mathbf{U}} \cdot \overline{\mathbf{T}}, \ \mathbf{A} \cdot \overline{\mathbf{U}} = \overline{\mathbf{V}}, \ \mathbf{A} \cdot \mathbf{V} = \overline{\mathbf{V}} \cdot \overline{\mathbf{T}}, \ \mathbf{A}^H \cdot \mathbf{W} = \overline{\mathbf{W}} \cdot \underline{\mathbf{T}}^H$$

to $\textbf{U}=[\textbf{U}_1,\textbf{U}_2,...],~\textbf{V}=[\textbf{V}_1,\textbf{V}_2,...],~\textbf{W}=[\textbf{W}_1,\textbf{W}_2,...]$ with kind of

$$\mathbf{A} \cdot \overline{\mathbf{U}}_i = \overline{\mathbf{V}}_i, \ \mathbf{A} \cdot \mathbf{V}_i = \overline{\mathbf{V}}_i \cdot \overline{\mathbf{T}}_i, \ \mathbf{A}^H \cdot \mathbf{W}_i = \overline{\mathbf{W}}_i \cdot \underline{\mathbf{T}}_i^H,$$

where \mathbf{T}_i are diagonal blocks of \mathbf{T} and columns $\boldsymbol{\xi}_{m+1}^{(i)} = \boldsymbol{\xi}_1^{(i+1)}$. Now for each \mathbf{U}_i and \mathbf{W}_i , you need compressed $\tilde{\mathbf{U}}_i$, $\tilde{\mathbf{W}}_i$.

 \rightarrow memory tradeoff

Introduction 00 000 Basic SR-Solvers 000 0000 Practical improvements

Towards SRse-ML(k)BiCG-IDR

▲ロト ▲聞 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Conclusion 0000

A-posteriori-orthogonalization

A-posteriori-orthogonalization - Idea

Given from recycling procedure

$$\mathbf{x}, \mathbf{r} \in \mathbb{C}^{N}$$
 and $\mathbf{U}, \mathbf{V} \in \mathbb{C}^{N \times k}$, such that $\mathbf{r}, \mathbf{v}_{1}, ..., \mathbf{v}_{k} \perp \mathcal{K}_{k \cdot J}(\mathbf{A}^{H}; [\mathbf{p}_{1}, ..., \mathbf{p}_{k}]).$

a-posteriori recurrence

After slight modification, $\mathbf{r}, \mathbf{v}_i \in \mathcal{G}_J$. If J > k, then one does not need further MVs for this modification.

ightarrow use IDR-type method, $s \geq k$

Remark: For efficient extension s should be > 1.

Introduction 00 000 00000 Basic SR-Solvers 000 0000 Practical improvements

Towards SRse-ML(k)BiCG-IDF 000 Conclusion 0000

Numerical example: stabilized & a.p.-orthogonalized

... and we can do better!

- 1. We use **BiCG** to generate a 210-dimensional recycling space
- 2. For stabilization we devide into $\ell = 3$ blocks of each J = 7 and k = 10.
- 3. For a-posteriori-iterations we only used **IDR(**1**)**.

extra cost

Store: 2 · 30 columns Compute: 210 orthogonalizations #RDs: 210+20 #MVs: 42+40

		Towards SRse-ML(k)BiCG-IDR	
		000	
000	0000		
00000			

Overview

We have

So far we have three methods, for each $\#RDs = k \cdot \#MVs$ for recycling.

method	general	$\mathcal{U} = \mathcal{K}$	1 st : RD≈MV	good r	TF
SRIDR	1	X	1	X	✓
SRMR	X	1	✓	1	✓
SRBiCG	1	1	×	X	X

To get the best from all, we start from SRBiCG and try to replace its Bi-Lanczos decomposition.

3

Introduction Basic SR-Solvers Practical improvements **Towards SRse-ML(k)BiCG-IDR** 00 000 000 000 0000 0000 0000 0000

fiddling around transpose products

Maybe with IDR?

Gen. Hessenberg decomposition: $\mathbf{A} \cdot \mathbf{U} = \overline{\mathbf{U}} \cdot \overline{\mathbf{H}} \cdot \mathbf{R}^{-1}$, **R** upper triangular. Maybe $\overline{\mathbf{T}} \approx \overline{\mathbf{H}} \cdot \mathbf{R}^{-1}$? No!

For $\mathbf{V} = \mathbf{A} \cdot \mathbf{U}$, $\mathbf{p}_i := (\mathbf{A}^H)^{g_s(i)} \cdot \mathbf{p}_{r_s(i)}$, $\mathbf{v}_i \perp \mathbf{p}_j$ for $i \neq j$ does not hold!

Maybe with ML(k)BiCGstab?

Hessenberg decomposition: $\mathbf{A} \cdot \mathbf{V} = \overline{\mathbf{V}} \cdot \overline{\mathbf{T}}$. Canonical choose \mathbf{W} with $range(\mathbf{W}(:, 1:i)) = \mathcal{K}_i(\mathbf{A}^H; [\mathbf{p}_1, ..., \mathbf{p}_s])$.

This only leads to biorthogonality, thus $\mathbf{W}^{H} \cdot \mathbf{V} = \mathbf{\Lambda} \neq \mathbf{I}$.

$$\mathbf{A} \cdot \mathbf{x}^{(\iota+\mu)} = \mathbf{b}^{(\iota+\mu)} \ \Rightarrow \ \mathbf{W}^H \cdot \mathbf{A} \cdot \mathbf{U} \cdot \mathbf{y}^{(\iota+\mu)} = \mathbf{\Lambda} \cdot \mathbf{y}^{(\iota+\mu)} = \mathbf{W}^H \cdot \mathbf{b}^{(\iota+\mu)}$$

		Towards SRse-ML(k)BiCG-IDR
		000
000	0000	
00000		

Build method by hand

Bi-Lanczos result

We have biortho<u>normal</u> $\boldsymbol{\mathsf{V}}$ and $\boldsymbol{\mathsf{W}}$ with

$$\mathbf{v}_i = \mathbf{v}_i^{(0)}$$

$$\mathbf{w}_i = (\mathbf{A}^H)^{g_s(i)} \cdot \mathbf{p}_{r_s(i)} - \sum_{\iota < i} \gamma_{i,\iota} \cdot \mathbf{p}_{\iota} .$$

$$\mathbf{A}^H \cdot \mathbf{W} = \overline{\mathbf{W}} \cdot \underline{\mathbf{T}}^H$$

ightarrow obtain short reps for $\overline{f V}$ and $\overline{f W}$

Martin Neuenhofen

Short Recycling of Krylov Subspaces

		Towards SRse-ML(k)BiCG-IDR	Conclusion
00 000 00000	000 0000		0000

- 1. motivation: reuse already computed orthogonality information
- 2. building block: compress basis matrices
- 3. sophistications:
 - 3.1. stability, a-posteriori-orthogonality
 - 3.2. (increasing efficiency of first solve: $\#RDs \approx \#MVs$)
 - 3.3. (changing matrices)

		Towards SRse-ML(k)BiCG-IDR	
00 000 00000	000 0000		

[GCR-full] P. Benner and L. Feng, Recycling Krylov Subspaces for Solving Linear Systems with successively changing Right-Hand-Sides arising in Model Reduction, Lecture Notes in Electrical Engineering, Vol. 74, pp. 125-140, Springer 2011.

[RGMRES] R. B. Morgan, GMRES with Deflated Restarting, SIAM J. Sci. Comput., 24(1), pp. 20-37, 2002.

[GCROT] E. de Sturler, Truncation Strategies for optimal Krylov subspace methods, SIAM J. Numer. Anal., Vol. 36(3), pp. 864-889, 1999.

[GCRO-DR] M. Parks and E. de Sturler and G. Mackey and D.D. Johnson and S. Maiti, *Recycling Krylov subspaces for sequences of linear systems*, SIAM J. Sci. Comput. Vol. 28(5), pp. 1651-1674, 2006.

		Towards SRse-ML(k)BiCG-IDR	
00 000 00000	000 0000		

- [R-MINRES] S. Wang and E. de Sturler and G. H. Paulino, Large-scale topology optimization using preconditioned Krylov subspace methods with recycling, Int. J. for Num. Meth. in Engineering, Vol. 69(12), pp. 2441-2468, 2006.
- [R-BiCG] K. Ahuja and E. de Sturler and P. Benner, *Recycling BiCGSTAB with an Application to Parametric Model Order Reduction*, MPI Magdeburg preprints, pp. 13-21, 2013.
- [brought me to SRIDR] M. Miltenberger, *Die IDR(s)-Methode zur Lösung von parametrisierten Gleichungssystemen*, Diplombarbeit, TU Berlin, 2009.

		Towards SRse-ML(k)BiCG-IDR	
00 000 00000	000 0000		

Thanks for your attention!

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● のへで

Martin Neuenhofen Short Recycling of Krylov Subspaces

		Towards SRse-ML(k)BiCG-IDR	
00 000 00000	000 0000		

Notation

We write

- 1. n = iteration count = #MVs (number of matrix-vector-products)
- typically: m =restart parameter, k =number of stored N-dimensional columns

$$\mathcal{K}_n(\mathbf{A}; \mathbf{b}) = \sup_{i=1,...,n} \{\mathbf{A}^{i-1} \cdot \mathbf{b}\}$$
$$\mathcal{K}_n(\mathbf{A}; [\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_k]) = \sup_{i=1,...,n} \{\mathbf{A}^{g_k(i)} \cdot \mathbf{p}_{r_k(i)}\}$$
$$\mathcal{K}_j^*(\mathbf{A}; \tilde{\mathbf{U}}) = \left\{\mathbf{x} \in \mathbb{C}^N \,|\, \mathbf{x} = \sum_{j=0}^{J-1} \mathbf{A}^j \cdot \tilde{\mathbf{U}} \cdot \boldsymbol{\gamma}_j\right\}$$
$$g_k(i) = \lfloor (i-1)/k \rfloor, \qquad r_k(i) = \operatorname{mod}(i-1,k) + 1$$

Martin Neuenhofen

Short Recycling of Krylov Subspaces

		Towards SRse-ML(k)BiCG-IDR	
00 000 00000	000 0000		

SRBiCG - Assessment

SRBiCG is uncompetitive

- 1. For first solve: $\#RDs = 2 \cdot \#MVs$, too bad ratio
- 2. need to compute shadow basis, leads to
 - 2.1. need for \mathbf{A}^{H} products
 - 2.2. lack of residual minimizing property

Outlook: SRse-ML(k)BiCG

I found a method with these properties

- 1. For first solve: $\#RDs = k/(k+1) \cdot \#MVs$
- 2. no need to compute shadow basis, leads to
 - 2.1. no need for \mathbf{A}^H products
 - 2.2. optional use of residual minimizing property

		Towards SRse-ML(k)BiCG-IDR	
			0000
000	0000		

Idea for Solution of Voodoo type

Recycling is linear operator

The recycling procedure can be interpreted as matrix:

$$\mathcal{L}^{(\iota)}(\mathcal{U}) := \mathcal{U} \cdot (\mathbf{A}^{(\iota)} \cdot \mathcal{U})^{\dagger}$$

To approximate $\mathcal{L}^{(\iota+\mu)}(\mathcal{U})$, we use $\mathcal{L}^{(\iota)}(\mathcal{U})$ as preconditioner for $\mathbf{A}^{(\iota+\mu)} \cdot \mathbf{x}^{(\iota+\mu)} = \mathbf{b}^{(\iota+\mu)}$:

$$\mathcal{L}^{(\iota)}(\mathcal{U}) \cdot \mathbf{A}^{(\iota+\mu)} \cdot \mathbf{x}^{(\iota+\mu)} = \mathcal{L}^{(\iota)}(\mathcal{U}) \cdot \mathbf{b}^{(\iota+\mu)}$$

This is solved iteratively.

 \rightarrow converges to

$$\mathbf{x}^{(\iota+\mu)} = \mathcal{U} \cdot \left((\mathbf{A}^{(\iota)} \cdot \mathbf{U})^{\dagger} \cdot (\mathbf{A}^{(\iota+\mu)} \cdot \mathcal{U}) \right)^{\dagger} \cdot (\mathbf{A}^{(\iota)} \cdot \mathcal{U})^{\dagger} \cdot \mathbf{b}^{(\iota+\mu)}.$$

Martin Neuenhofen

Short Recycling of Krylov Subspaces

		Towards SRse-ML(k)
00	000	000
000	0000	
00000		

Conclusion 0000

Geometric interpretation (hermitian case)

The orthogonal residual becomes biorthogonal.

◆□ > ◆□ > ◆□ > ◆□ > ● □

$$-\nabla \cdot (a(u) \cdot \nabla u) = f \quad \text{in } \Omega = (0,1)^2 \\ u = 0 \quad \text{on } \partial \Omega \\ \sin(\pi \cdot x) \cdot \sin(\pi \cdot y)^2 = f$$

How meaningful?

We cannot check. R of GCR's QR-decomposition is too ill.

Figure 3: for a(u) = 1

Figure 4: for $a(u) = 1 + 10 \cdot u$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Finite differences:

$$\sum_{\tilde{p}\in\mathcal{B}(p)}\frac{u_p-u_{\tilde{p}}}{\Delta x^2}\cdot\frac{a_p+a_{\tilde{p}}}{2}=f_p$$

Damped Picard iteration, $\alpha = 0.5$

$$\mathbf{x}^{(0)} = \mathbf{0}$$

$$\begin{cases} \mathbf{A}(\mathbf{x}^{(\iota)}) \cdot \tilde{\mathbf{x}}^{(\iota+1)} = \mathbf{b} \in \mathbb{R}^{10000} \\ \mathbf{x}^{(\iota+1)} = (1-\alpha) \mathbf{x}^{(\iota)} + \alpha \, \tilde{\mathbf{x}}^{(\iota+1)} \end{cases}, \quad \iota = 0, ..., 40$$

 (α)

Conjugate Gradients vs. SRMR(k = 40, w = 3)

~ ~ ~ ~